A Sparse-Sparse Iteration for Computing a Sparse Incomplete Factorization of the Inverse of an SPD Matrix

نویسندگان

  • Davod Khojasteh Salkuyeh
  • Faezeh Toutounian
چکیده

In this paper, a method via sparse-sparse iteration for computing a sparse incomplete factorization of the inverse of a symmetric positive definite matrix is proposed. The resulting factorized sparse approximate inverse is used as a preconditioner for solving symmetric positive definite linear systems of equations by using the preconditioned conjugate gradient algorithm. Some numerical experiments on test matrices from the Harwell-Boeing collection for comparing the numerical performance of the presented method with one available well-known algorithm are also given. AMS Subject Classification : 65F10, 65F50.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems

This paper is concerned with a new approach to preconditioning for large sparse linear systems A procedure for computing an incomplete factorization of the inverse of a nonsymmetric matrix is developed and the resulting factorized sparse approximate inverse is used as an explicit preconditioner for conjugate gradient type methods Some theoretical properties of the preconditioner are discussed a...

متن کامل

Approximate Inverse Preconditioners via Sparse-Sparse Iterations

The standard incomplete LU (ILU) preconditioners often fail for general sparse in-deenite matrices because they give rise tòunstable' factors L and U. In such cases, it may be attractive to approximate the inverse of the matrix directly. This paper focuses on approximate inverse preconditioners based on minimizing kI ? AMk F , where AM is the preconditioned matrix. An iterative descent-type met...

متن کامل

Approximate Inverse Preconditioners for General Sparse Matrices

The standard Incomplete LU (ILU) preconditioners often fail for general sparse indeenite matrices because they give rise tòunstable' factors L and U. In such cases, it may be attractive to approximate the inverse of the matrix directly. This paper focuses on approximate inverse preconditioners based on minimizing kI?AMk F , where AM is the preconditioned matrix. An iterative descent-type method...

متن کامل

A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method

A method for computing a sparse incomplete factorization of the inverse of a symmetric positive definite matrix A is developed, and the resulting factorized sparse approximate inverse is used as an explicit preconditioner for conjugate gradient calculations. It is proved that in exact arithmetic the preconditioner is well defined if A is an H-matrix. The results of numerical experiments are pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008